摘要

针对玻璃纤维管纱缺陷检测中存在的抗干扰能力差、检测精度低和检测速度慢的问题,提出了一种基于改进YOLOv5的玻璃纤维管纱缺陷检测方法(BY-YOLO)。首先建立了高效重参数网络(ER-Net)作为主干网络对管纱缺陷特征进行优化提取,利用结构重参数化技术和精确金字塔池化模块(R-SPP)来提升检测速度和减弱特征的噪声信息对检测效果的影响;其次提出了深度注意力路径聚合网络(DA-PANet)作为颈部网络对管纱的多尺度特征进行融合,通过特征增强模块Depth-Mixer和注意力机制模块增强管纱缺陷特征的语义信息,提高模型对多尺度缺陷的检测能力。试验结果表明:该方法能够将玻璃纤维管纱缺陷检测的mAP值提高至94.43%,同时将其检测速度提升到103帧/s。与其他主流的检测模型相比,该研究提出的方法拥有更高的鲁棒性、准确性和实时性。