摘要

传统无人船舶避碰障碍物识别方法,受到方法中识别危险系数判定基数过小的影响,在避碰障碍物识别过程中,无法在有效安全距离下瞬态识别障碍物,造成避碰全局输出准确率与效率降低。为了解决无人船舶识别危险基数过小的问题,提出无人船舶避碰障碍物智能自动识别方法。首先采用智能危险判定算法,对船舶与障碍物之间的距离进行危险系数判定计算;然后根据判定危险系数数据,重构会遇状态模型。通过模型得到算法对障碍物的识别信息;最后通过神经遗传算法,对障碍物分布信息进行避碰数据的识别转换,从而实现优化识别运算场景,提升识别方法识别准确率与输出效率。通过在同一场景下不同识别方法的对比数据表明:提出的识别方法更适合无人船舶的避碰障碍物识别计算,能够有效将障碍物识别准确率控制在97.43%。同时,提升全局输出效率25%以上。