本文根据股指、股价等数据的时序特征将人工神经网络(ANN)与深度学习中的循环神经网络(RNN)引入股指预测,基于BP神经网络模型与长短期记忆(LSTM)神经网络模型构建了BP-LSTM模型.基于上证指数,本文进行了进行数值实验.结果表明BP-LSTM预测模型的准确率相比传统机器学习模型有明显提升,与普通LSTM模型相比也有较大提升.