摘要
提出了一种利用隐马尔可夫模型和支持向量机作为两级分类器的分类方法,实现对语音、杯碟碰撞声、开门和关门声、口哨声以及电话铃声五种环境声音的分类。对于采集和预处理后的环境声音信号,首先在第一级采用HMM模型进行初步分类,找出概率最大的两类,确定每种环境声音最有可能属于的类别,然后采用第二级SVM分类器作出进一步的判断。实验结果表明,相对于单独使用两者中任何一种作为分类器的分类方法,该方法对环境声音的识别具有更高的分类准确性。
- 单位
提出了一种利用隐马尔可夫模型和支持向量机作为两级分类器的分类方法,实现对语音、杯碟碰撞声、开门和关门声、口哨声以及电话铃声五种环境声音的分类。对于采集和预处理后的环境声音信号,首先在第一级采用HMM模型进行初步分类,找出概率最大的两类,确定每种环境声音最有可能属于的类别,然后采用第二级SVM分类器作出进一步的判断。实验结果表明,相对于单独使用两者中任何一种作为分类器的分类方法,该方法对环境声音的识别具有更高的分类准确性。