摘要

CFSFDP(Clustering by Fast Search and Find of Density Peaks)算法在单个簇中存在多个密度峰值时,使用决策图难以确定聚类中心数量,导致聚类效果不佳的情况。对此提出将所有密度大于当前位置的数据点以及与当前位置的最小距离各归为一个集合,并对高斯核求得的局部密度排序。当存在多个密度峰值时,只选择第一个点作为聚类中心,同时利用归一化的γ值分布图确定聚类中心数。人工数据集和UCI数据集的数值模拟实验表明,改进CFSFDP算法在调整兰德系数、同质性、完整性、V-measure和标准互信息评分等各指标值均优于CFSFDP算法、DBSCAN算法和k-means算法。该算法弥补了CFSFDP算法对多密度峰值不能很好聚类的缺陷,适用于对较低维度的任意形数据集的聚类。