摘要

针对卷积神经网络(CNN)中的池化操作会丢失部分特征信息和胶囊网络(CapsNet)分类精度不高的问题,提出了一种改进的CapsNet模型。首先,使用两层卷积层对特征信息进行局部特征提取;然后,使用CapsNet对文本的整体特征进行提取;最后,使用softmax分类器进行分类。在文本分类中,所提模型比CNN和CapsNet在分类精度上分别提高了3.42个百分点和2.14个百分点。实验结果表明,改进CapsNet模型更适用于文本分类。