摘要

天基遥感图像分辨率的退化为舰船目标的识别带来了巨大挑战。图像超分辨率重建技术可以为识别任务提供丰富的信息,然而将图像超分辨率重建与舰船目标识别任务分别独立进行,将会忽略两个任务间的内在相关性。针对这些问题,为了探索图像超分辨率重建与目标识别任务间的有效结合方式,提出了面向舰船目标识别的遥感图像超分辨率重建方法。具体来说,首先设计了一种通道全连接网络,以自适应加权的通道全连接代替残差连接,提升各层特征的流动性与表达性能,实现遥感图像的高效超分辨率重建。为了进一步挖掘超分辨率重建对舰船目标识别性能提升的潜力,引入多任务学习技术,提出了一种超分辨率重建与目标识别联合网络,通过多阶段训练优化策略实现联合端到端网络的稳定训练,从而引导任务间进行有效的互相监督学习。在公开数据集FGSCR-42上的实验结果表明,当遥感图像在8倍和16倍的分辨率退化情况下,提出的超分辨率重建网络帮助舰船目标识别准确率分别提升了33.27%和17.48%,所提联合网络则将识别准确率进一步提升了1.75%和1.91%。