摘要
选择表征建模对象特性漂移的新样本对软测量模型进行自适应更新,能够降低模型复杂度和运行消耗,提高模型可解释性和预测精度.针对新样本近似线性依靠程度(Approximate linear dependence,ALD)和预测误差(Prediction error,PE)等指标只能片面反映建模对象的漂移程度,领域专家结合具体工业过程需要依据上述指标和自身积累经验进行更新样本的有效识别等问题,本文提出了基于更新样本智能识别算法的自适应集成建模策略.首先,基于历史数据离线建立基于改进随机向量泛函连接网络(Improved random vector functional-link networks,IRVFL)的选择性集成模型;然后,基于集成子模型对新样本进行预测输出后采用在线自适应加权算法(On-line adaptive weighting fusion,OLAWF)对集成子模型权重进行更新,实现在线测量阶段对建模对象特性变化的动态自适应;接着基于领域专家知识构建模糊推理模型对新样本相对ALD(Relative ALD,RALD)值和相对PE(Relative PE,RPE)值进行融合,实现更新样本智能识别,构建新的建模样本库;最后实现集成模型的在线自适应更新.采用合成数据仿真验证了所提算法的合理性和有效性.
-
单位东北大学; 流程工业综合自动化国家重点实验室; 北方交通大学