摘要

针对非结构化道路分割难度大、小目标检测精度较低等问题,构建基于小目标类别注意力机制与特征融合的AF-ICNet轻量级实时语义分割网络。采用空洞空间卷积池化金字塔融合不同尺度特征感受野以增强网络的全局感知能力。嵌入CA注意力机制,建立通道信息和空间位置信息以增强网络对非结构化道路小目标类别语义特征的提取能力。针对类别分布不均衡问题,改进权重交叉熵损失函数。利用AF-ICNet模型对Cityscapes与IDD数据集进行训练,在Cityscapes测试图像中分割的MIoU达到了71.5%,在IDD测试图像中分割的MIoU达到了62.5%。搭建实验测试系统进行实景测试,测试结果表明,AF-ICNet有效提升了非结构化道路及小目标类别的分割精度,并满足测试的实时性要求。