针对约束优化问题,提出一种自适应人工蜂群算法。算法采用反学习初始化方法使初始种群均匀分布于搜索空间。为了平衡搜索过程中可行个体和不可行个体的数量,算法使用自适应选择策略。在跟随蜂阶段,采用最优引导搜索方程来增强算法的开采能力。通过对13个标准测试问题进行实验并与其他算法比较,发现自适应人工蜂群算法具有较强的寻优能力和较好的稳定性。