摘要
影响力最大化的目的是在网络中发现能够触发最大数量的剩余节点参与到信息传播过程的一小群节点.目前异质信息网络中影响力最大化的研究通常从网络中抽取同质子图、或基于节点局部结构的元路径进行节点影响力的评估,没有考虑节点的全局特征和网络中高影响力节点间的集群现象给种子集合最终扩散范围造成的影响损失.文中提出了一种基于社区与结构熵的异质信息网络影响力最大化算法,该算法能够有效地从局部和全局两个方面度量节点的影响.首先,通过构建元结构保留节点在网络中的局部结构信息和异质信息度量节点的局部影响;其次,利用节点所属社区在整个网络中的权重占比对节点的全局影响进行度量;最后,综合求出节点的最终影响并选出种子集合.在真实数据集上进行的大量实验结果表明所提算法有较好的有效性和效率.
- 单位