摘要

汽车销售过程中存在新车与二手车销售不平均、放款受季节影响等问题。而人工神经网络适用于处理不规则、非线性的汽车销量数据,基于BP算法和LSTM算法建立15日的汽车销售预测模型,比较二者的预测效果,可以帮助销售商处理放款量及放款金额的不确定性问题。结果显示,LSTM模型对于受季节因素影响的汽车销售数据在销售台数和销售金额趋势预测方面更为有效合理,在模型预测的精度上比BP模型效果更优,可为汽车行业的销售预测提供参考。