摘要
针对传统路径规划方法在部分未知复杂大场景环境中搜索空间大、效率低、避障成功率不高等问题,提出一种基于拓扑-栅格-度量复合地图的移动机器人分层路径规划方法。首先将机器人作业环境描述为栅格地图并划分为多个栅格化的子区域,以子区域为关键节点进行位置关系抽象而获得拓扑架构,并对局部栅格区域进行精细化描述,构建拓扑-栅格-度量的复合地图。其次,在不同地图层级上分区域搜索机器人路径,在拓扑地图上采用Floyd算法规划子区域之间的区间路径,面向栅格地图提出搜索子区域内部路径的改进A*算法,通过引入扩展点筛选策略、双向搜索机制、路径冗余点剔除技术,提高了路径规划的效率与质量,并拼接各段区间路径和内部路径生成全局优化初始路径。再次,针对部分未知场景中的动态障碍物,在度量地图上提出基于深度强化学习架构的动态避障路径规划方法,利用价值分类经验回放机制提高样本的利用率和模型训练的效率。实验结果表明,所提方法有较高的搜索效率和避障成功率,生成的路径兼具安全性和平滑性。
- 单位