摘要

采用两期无人机可见光遥感图像,对灌浆期冬小麦倒伏图像特征及倒伏信息提取方法进行研究。从增强图像空间域方面,对图像进行二次低通滤波,获取地物散点图,以散点存在明显分界线为判定标准,选出小麦倒伏信息提取的单特征,对两单特征线性拟合构建倒伏小麦两时期提取特征参数F1和F2,再以两特征参数相似性构建综合特征参数F3。将特征参数结合K-means算法提取冬小麦倒伏信息,整体精度(OA)达86. 44%以上,Kappa系数达0. 73以上,倒伏信息提取精度(F)为81. 07%以上,因此综合特征参数可作为两个时期冬小麦倒伏信息提取特征参数。分别用本文方法、支持向量机、神经网络法和最大似然法提取验证区域倒伏小麦信息,经验证,本文方法提取小麦倒伏信息整体精度(OA)达86. 29%以上,Kappa系数达0. 71以上,倒伏信息提取精度(F)达80. 60%以上;其他3种常用方法提取的整体精度(OA)为69. 68%~87. 44%,Kappa系数为0. 49~0. 72,倒伏信息提取精度(F)为65. 33%~79. 76%。结果表明,本文方法整体精度和倒伏信息提取精度均高于目前常用分类方法。因此,综合特征参数与K-means算法对冬小麦在灌浆期倒伏信息提取具有一定的准确性和适用性。