摘要

通过卷积神经网络和长短期记忆网络进行多模型结合,实现动态手势识别分类建模,并使用数据增强算法增加数据的多样性,通过差分特征融合改进网络。7种动态手势动作识别分类的实验结果显示,使用数据增强算法增加数据的多样性后,结合模型的识别率最佳可提升2.86%;通过差分算法改进网络,序列间差分特征融合模型识别率达到83.81%,维度差分特征融合模型识别率达到87.62%。表明多模型结合可解决单一模型的局限性,处理更加复杂的动态手势分类问题,两种不同形式的差分特征融合改进都可提升动态手势动作的识别率,从而验证了所设计的差分特征融合改进的动态手势识别分类网络模型的有效性和可行性。

全文