摘要

由于遥感图像目标检测模型计算复杂度和内存需求的急剧增加,难以应用在小尺寸和低功耗的嵌入式平台上。针对上述问题,本文提出一种基于现场可编程门阵列(Field-Programmable Gate Array,FPGA)的软硬件协同加速框架,实现遥感图像目标检测模型的推理加速。首先,遵循Vitis AI加速方案对训练后的YOLOv3网络参数进行压缩、编译;其次,在FPGA端搭建包含深度学习处理单元(Deep-Learning Processing Unit,DPU)模块的底层硬件工程,并在ARM上编写DPU任务调度程序;最后,在Zynq So C开发平台上实现FPGA的推理加速。实验结果表明,该框架在Xilinx-Zynq-MPSoC上的平均吞吐率为1.75 TOPs(26.8 fps),并且在DIOR数据集上的平均精度(mean Average Precision,m AP)为56.7%。