无线通信中的边缘智能

作者:刘婷婷; 杨晨阳; 索士强; 黄远芳
来源:信号处理, 2020, 36(11): 1789-1803.
DOI:10.16798/j.issn.1003-0530.2020.11.001

摘要

本文综述了机器学习(Machine learning, ML)在无线边缘网络的主要应用、典型学习方法、以及性能潜力。首先分析了无线边缘智能与传统人工智能的区别。而后讨论了两种降低训练ML复杂度的思路,一种是从学习方法角度研究知识与数据联合驱动的ML,另一种是从无线系统角度设计合适的训练和决策方法,分析了集中式决策和分布式决策、集中式训练和分布式训练的优缺点。进一步介绍了联邦学习在无线边缘网络中的应用现状和适用场景,总结了在降低通信开销和个性化学习方面的研究进展与存在的问题。最后对全文进行了总结。