摘要
随着泛在电力物联网概念的提出,暂态稳定在电力系统运行控制中扮演着越来越重要的角色。由于相量测量单元(Phasor Measurement Unit,PMU)的广泛配置,基于机器学习的暂态稳定实时评估方法展现出了巨大的发展潜力。针对这类方法在应用中离线训练数据生成耗时及造成的难以在网架发生变化后快速更新模型的问题,论文提出了一种基于主动学习的电力系统暂态稳定评估方法。考虑不同运行方式、不同故障下进行短时间仿真(仿真至故障切除时刻)生成无标注样本;随机选取一部分样本进行长时间仿真以标注这些样本的稳定状态,并进一步训练基于支持向量机的暂态稳定评估模型;最后循环选择剩余未标注样本中信息熵较高的部分数据进行标注对模型重新训练,直至模型准确率不再变化。在新英格兰10机39节点测试电力系统的仿真表明,论文提出的方法能够有效降低离线仿真的时间,大大提高评估模型部署的效率,并对广域噪声具有鲁棒性。
-
单位国网湖南省电力公司