摘要

针对仅利用手臂表面肌电(EMG)信号难以准确识别手指动作的问题,提出了将手指关节的姿态信号与表面EMG信号融合用于识别手指姿势的方法。利用MYO手环同步采集手臂的8组肌电信号,同时利用姿态传感器采集手指运动时的三维角度信息。采用滑动平均能量法,依据采集到的原始EMG信号进行活动段检测,提取出执行有效动作过程中的相关信号,并分别采用绝对值均值(MAV)和标准差(SD)对该部分的肌电信号和角度信号提取特征。将提取的特征值作为SVM多类分类器的输入,用于识别手势动作。实验结果表明:融合手指角度信号可有效提高手指动作的识别率,整体识别率达到99. 3%。

全文