摘要
提出了一种基于双边滤波和像元邻域信息的高光谱图像分类(BS-SVM)算法。该方法首先利用双边滤波器提取经主成分分析降维后的高光谱图像空间纹理信息,然后通过设计一种高光谱像元邻域信息来构建高光谱的空间相关信息,最后将2种空间信息融合后与光谱信息结合,形成空谱信息(空间信息和光谱信息)后交由支持向量机完成分类。实验结果表明,相比单纯使用光谱信息的支持向量机的分类方法以及基于Gabor滤波的空谱信息结合分类方法,所提出的BS-SVM方法分类精度有较大幅度提高,充分证明了该方法的有效性。
- 单位