基于散射图卷积网络的极化SAR图像分类方法、介质及设备

作者:刘旭; 焦李成; 张丹; 刘芳; 李玲玲; 杨淑媛; 侯彪
来源:2020-12-18, 中国, ZL202011511666.5.

摘要

本发明公开了一种基于散射图卷积网络的极化SAR图像分类方法、介质及设备,将待分类的极化SAR影像原始数据编码成极化散射矩阵;对极化散射矩阵进行稀疏散射编码得到稀疏散射矩阵,并构造散射关系邻接矩阵;将稀疏散射矩阵拉成列向量,然后和散射关系邻接矩阵一起输入到初始化的散射图卷积神经网络中,随机选择每类的训练样本得到训练样本集合;将选取的训练样本集合分批次并归一化后与散射关系邻接矩阵一起输入到散射图卷积神经网络进行训练;得到散射图卷积神经网络的模型参数;最后利用训练好的分类器预测分类。本发明对极化SAR数据表示和学习,从而提高了分类精度,可用于对极化SAR影像散射特性进行建模和地物分类。