基于联合检测-描述的火星表面特征提取方法

作者:何超群; 胡茄乾; 刘洋; 李爽*
来源:南京航空航天大学学报, 2022, 54(06): 1040-1046.
DOI:10.16356/j.1005-2615.2022.06.005

摘要

针对火星着陆光学导航过程中,传统的图像特征点提取算法在相机角度变化、光照条件变化等情况下,序列图像间的特征点提取与匹配鲁棒性差的问题,提出了基于卷积神经网络的联合检测-描述特征提取方法。首先,通过Blender获取模拟火星着陆过程的视频,使用稀疏重建方法,对模拟视频的图像和火星真实图像进行三维重建,建立了神经网络可用的训练数据集。然后搭建了卷积神经网络以处理图像数据,通过改进损失函数,联合特征描述符和特征检测器双重作用,获得了更准确的匹配结果。仿真结果表明,该方法在处理多视角、光照条件多变的火星表面图像方面,具有更好的特征提取结果,并在匹配测试阶段具备优于传统算法的性能。

全文