摘要

BP神经网络模型作为一种常用的机器学习方法,被广泛应用于物种分布模型,来解析生物分布与环境因子的关系。与传统的回归模型相比,该模型可以灵活处理变量间的非线性关系,但其结构复杂,在参数设置方面存在不确定性,从而影响模型的预测与应用。因此,本研究根据2016—2017年山东近海口虾蛄渔业资源调查与环境数据,利用BP神经网络模型构建口虾蛄资源分布模型,同时利用数据分组处理算法(group method of data handing, GMDH)、遗传算法(genetic algorithm, GA)和自适应算法(adaptive algorithm)分别对模型输入变量、初始权值和隐节点数目3方面进...