摘要

为解决一维短时交通流数据难以提取特征而造成预测精度低的问题,引入小波分解对传统LSTM模型进行改进,构建一种基于WA-LSTM的短时交通流组合预测模型。首先通过小波多尺度辨析将一维短时交通流时间序列数据分解为低频趋势分量和高频细节分量,舍去最高频细节分量达到去噪效果;然后对剩余的分量使用LSTM进行建模和预测,将每个分量得到的预测结果重构,最终得到短时交通流预测结果;最后通过Pems系统实测数据对模型进行验证。研究结果表明,在以5 min为间隔的短时交通流预测中,WA-LSTM模型比传统BP、传统LSTM、WA-BP模型的预测精度更高。

  • 单位
    湖北汽车工业学院

全文