摘要
合成孔径雷达(Synthetic Aperture Radar,SAR)目标识别技术广泛应用于道路、船舶等检测任务中,但合成孔径雷达图像易受散斑噪声干扰,直接将卷积神经网络(Convolutional Neural Network,CNN)应用在SAR数据集上难以高效准确地提取有效特征。针对以上问题,提出了一种嵌入特征预提取和注意力机制的SAR图像目标识别算法(Convolutional Automatic Encoder-Convolutional Neural Network-Channel and Spatial Attention Mechanism,CAE-CNN-CSAM),即利用优化的Lee滤波算法降低SAR图像斑点噪声,通过编解码技术对SAR图像进行特征预提取,而后在卷积神经网络中引入注意力机制,提高算法对通道和空间特征的表达能力。在公开的Statoil/C-CORE数据集上,该算法对目标的识别准确率达到了94%,相比于目标识别准确率约为88%的CNN等基准模型具有更高的目标识别性能。
-
单位电子信息工程学院; 沈阳航空航天大学