摘要
在液压系统模拟加载与自动测试、识别过程中,工作装置油压波动信号是一种典型的非平稳信号。针对其影响因素多、不具备明显频域特征以及任何单一特征参量都无法对信号进行准确识别的难题,提出了对信号先进行状态分割,在分割基础上计算不同工作状态下的特征参量,并进行基于主成分分析(PCA)的特征提取方法,最后采用最小二乘支持向量机(LSSVM)构建多分类器,实现对工作装置6种不同工作状态的准确识别。实验结果验证了该方法的有效性,为同类液压系统的信号特征分析及模式识别提供了参考。
-
单位中国人民解放军武汉军械士官学校; 中国人民解放军陆军工程大学