摘要
针对高斯型非线性滤波器在大初始偏差条件下性能下降、甚至发散的问题,提出了一种新的非线性滤波算法,即迭代更新扩展卡尔曼滤波器(iterated update extended Kalman filter,IU-EKF)。首先,该算法在EKF框架下,将传统的一步量测更新在伪时间上分为多步进行,采用部分增益将当前量测信息逐步地引入量测更新过程实现对状态的后验估计;其次,由于多步量测更新过程引入了每一步的过程噪声,因此将量测噪声与每一步更新后的状态估计误差之间的互协方差代入误差协方差矩阵,再利用此误差协方差矩阵的迹对标准卡尔曼增益矩阵求导并令结果为零,以导出噪声相关条件下的最优卡尔曼增益矩阵表达式;最后,根据后验量测残差自适应地调整迭代更新次数,在保证一定滤波精度的前提下,降低了算法的计算量。以2维目标跟踪问题为例,在大初始偏差条件下,通过仿真实验将本文算法分别与EKF、IEKF、UKF、CKF算法进行对比,并针对不同迭代次数对滤波精度的影响进行对比分析。仿真结果表明:本文算法较EKF大幅提高了滤波估计精度,且在大初始偏差条件下,本文算法性能优于现有经典高斯假设滤波器。同时,当迭代次数按1、2、5、10、20递增时,本文算法的滤波精度也随之提升,但提升幅度逐渐减缓。
-
单位电子工程学院; 中国人民解放军海军工程大学