摘要
基于深度光流估计的动态背景运动小目标检测,为了保证小目标的检测性能,一般采用较少的下采样次数以维持较高的分辨率,但由此带来了较大的计算耗时。特征匹配是深度光流估计的一个核心处理环节,其耗时在光流估计整体耗时中的占比较大,且对下采样次数非常敏感。据此,提出一种基于局部特征匹配的快速光流估计算法:引入目标运动信息,缩小特征匹配的空间范围,减少待处理的数据量;设计分块局部匹配策略,引入批处理机制,避免逐点局部匹配策略数据处理耗时过大问题,实现算法加速。在此基础上,在光流估计获取的光流场上,采用CenterNet网络检测运动目标对应的光流异常区域。从光流估计耗时、检测精度等方面开展了实验验证,结果表明:针对运动小目标检测,分块特征匹配光流估计比全局特征匹配光流估计提速约20%,目标检测性能相当。
-
单位自动化学院; 杭州电子科技大学