摘要
针对语义分割模型SegFormer在进行图像分割时存在多尺度语义信息利用不充分、细节特征丢失等问题,提出了一种改进的轻量级的语义分割算法,并设计了一个新的解码器来增强多尺度特征表示.采用新提出的瓶颈空间金字塔池化模块(BoSPP)以获得丰富且准确的多尺度信息,所提出模型采用拉普拉斯金字塔来获得编码阶段更精确的高分辨率细节特征,并将其应用于解码阶段来解决细节特征丢失的问题;最后对特征进行逐步融合,以避免上采样率过大导致细节损失,极大地保留丰富的细节特征进而增强最终的语义分割效果. ADE20K数据集的实验结果表明,使用改进后的解码器进行语义分割,在精度和运算量方面都有所改善.以使用MiT-B0编码器的实验为例,其mIoU指标相比原网络提升了1.36%,浮点运算量仅为原网络的51%.实验结果表明,改进后的模型在不增加大量计算成本的情况下提升了模型的分割精度,且浮点运算量更少,改进后的语义分割模型优于原模型,在增强多尺度特征和图像边界细节特征方面有更好的分割效果.
- 单位