摘要

针对离散线性系统,研究批次长度随机变化的反馈辅助PD型量化迭代学习控制问题.考虑系统信号经量化后传输到控制器或执行器的情况,给出两种量化方案:跟踪误差信号量化和控制输入信号量化.基于两种不同的量化信号,在批次长度和初始条件随机变化前提下设计反馈辅助PD型迭代学习控制算法.采用扇形界的处理方法和堆积系统框架,推导数学期望下的学习收敛条件:在误差信号量化情况下,所提出控制算法可以保证跟踪误差渐近收敛到零;在控制输入信号量化情况下,所提出控制算法能够保证跟踪误差有界收敛.仿真示例对比验证了两种量化方案下所提出方法的有效性和优越性.

全文