在没有先验知识的前提下,聚类是分析样本集中不同类簇的有效方式。文中提出了一种基于改进力导向模型的聚类算法。为实现样本数据预处理的类内聚集和类间分离效果,设计了基于样本点局部密度和样本间距离的吸引力计算方法、基于样本点近邻连通图中边的介数的排斥力计算方法。实验结果表明,文中算法能够使得类内样本点更加聚集、类间样本点更加分离,可以有效地提高聚类的正确率。