摘要

为解决虚拟试装中难以自动评价服装丝缕平衡性的问题,充分应用了深度学习在图像自动识别中的优越性,针对服装丝缕平衡的特点,设计了卷积神经网络的拓扑结构,通过对各个特征部位上不同平衡状态的服装丝缕图片进行等级分类和学习训练,得到的网络模型的识别准确率达到93. 589%,从而建立了可实现对服装各个关键部位丝缕平衡性自动评价系统。结果表明:应用基于深度学习的服装丝缕平衡性评价系统,对虚拟环境下的服装各个关键部位上的丝缕图片进行识别和分类,可以缩短服装平衡性检测的时间,提高检测的效率,快速获取服装丝缕不平衡的位置,以便对服装进行修改。