摘要
为提高光伏发电预测精度,本文运用灰色关联理论分析历史气象数据,筛选出与待测日天气数据关联度较高的历史数据组作为相似日集合。建立经思维进化算法优化的BP神经网络预测模型,将上述相似日集合作为训练样本代入预测模型用于预测光伏发电功率。以澳洲某光伏系统的数据为例进行预测,结果表明,相比传统BP神经网络法、RBF神经网络,结合相似日与思维进化算法优化神经网络的光伏短期发电预测方法具有更高的预测精度。
- 单位
为提高光伏发电预测精度,本文运用灰色关联理论分析历史气象数据,筛选出与待测日天气数据关联度较高的历史数据组作为相似日集合。建立经思维进化算法优化的BP神经网络预测模型,将上述相似日集合作为训练样本代入预测模型用于预测光伏发电功率。以澳洲某光伏系统的数据为例进行预测,结果表明,相比传统BP神经网络法、RBF神经网络,结合相似日与思维进化算法优化神经网络的光伏短期发电预测方法具有更高的预测精度。