摘要
视觉注意机制具有快速引导关注到重点区域的特性,将其引入高光谱图像异常检测中具有可行性。本文从采样方式、波段选取、融入局部光谱特征3方面构建更适用于计算高光谱图像显著性的视觉注意机制模型。针对经典的基于高斯统计分布假设的RX异常检测算法在背景参数估计中易受潜在异常干扰的问题,利用视觉显著性结果对原图像进行高斯加权,在加权后图像中进行背景均值与协方差的重新估算,进而使用更精确的背景参数对原图像进行RX异常检测。在5个经典数据上的实验结果表明,本文方法有效地表现了潜在的异常目标,改进的RX异常检测算法具有更高的检测精度与更低的虚警率。
- 单位