摘要

针对深度学习中数据增强的方法,改进生成式对抗网络(GAN,Generative adversarial networks)模型,形成一种快速收敛生成式对抗网络,能够克服GAN训练过程不稳定、收敛速度缓慢容易发生模式崩溃等问题。采用在判别器中使用多尺寸卷积,加强判别器的特征提取能力;在生成器中添加残差单元的方法,使得生成器可以快速拟合真实数据的分布;同时对判别器进行预训练的策略,有利于提高生成器前期训练稳定性和加快训练过程。运用CIFAR-10标准数据集进行实验,与几种基于GAN的模型对比,证实本文的改进算法效果较好,图像质量和多样性更优。利用本文提出的改进算法用于美国NIH临床数据库的胸部X射线数据集,生成扩充样本,经图灵测试证实了算法的有效性。