摘要
高效用项集挖掘可以提供有趣的结果集,但并不能提供单个项的数量,因此,本文提出了高效用模糊项集.但是,现实世界的数据是不断出现的,需要实时处理新到来的数据.为解决当前高效用模糊项集不能处理数据流的问题,又提出了模糊效用列表(fuzzy utility list, FUL)结构用于存储当前窗口中项的批次号、项在事务中的事务标识符、项的模糊效用以及项的剩余模糊效用,该结构能有效的对批次进行插入和删除操作.最后,基于FUL提出了数据流高效用模糊项集挖掘算法.对真实数据集和合成数据集进行了广泛的实验,结果证实了算法的效率及可行性.
- 单位