摘要
老旧扶梯机械故障较为隐蔽,定期检验不易发现,且对扶梯机械故障的智能分类的研究较少。自动扶梯振动信号复杂多变,数据量大,而采用传统机器学习算法对其机械故障进行诊断效果不佳。为实现自动扶梯机械故障的智能分类,在经典二维卷积神经网络的基础上,引入了卷积核的一维卷积神经网络,构建了自动扶梯机械故障的自动分类模型。首先为提高模型的泛化性能,融合凯斯西储大学轴承故障、东南大学齿轮故障和某大型商场自动扶梯梯级滚轮磨损故障的复合故障数据建立了数据集。然后用数据增强的方法对数据进行预处理,接着采用一维卷积神经网络,构建自动扶梯机械故障诊断模型。最后使用测试数据集对模型的分类精度进行了验证实验,结果表明该模型有着比传统机器学习算法自动化程度高、成本低、专业门槛低、步骤简单等明显优势,而且该模型能快速准确地对自动扶梯的机械故障进行自动诊断,实现了95%的诊断准确率,为下一步将该算法集成到检验仪器中打下了基础。
- 单位