摘要

提出了一种基于最大-最小蚁群算法的模糊分类系统设计方法。该方法通过两个阶段来实现:特征变量选择和模型参数优化。首先采用蚁群算法对特征变量进行选择,得到一组具有较高分辩性能的特征变量,提高模型的解释性;在模型结构确定后,蚁群算法从训练样本中提取信息对模型的参数进行优化,在保证模型精确性的前提下,构造具有较少变量数目及规则数目的模糊模型,实现了精确性与解释性的折衷。最后将本方法运用到Iris和Wine数据样本分类问题中,并将结果与其它方法进行比较,仿真结果证明了该方法的有效性。