摘要

为了解决低光照条件下拍摄造成的对比度过低、颜色失真等多种图像内容退化问题,本文提出了一种结合空间注意力机制与多尺度分辨率融合的图像增强方法。首先基于Retinex理论,利用带有空间注意力机制的分解网络将低光照图像分解为光照图与反射图,并且在光照图中,采用伽玛校正对光照图拉伸光照对比度。然后在融合网络中,将校正过的光照图与反射图通过U-net网络,使高、低分辨率的特征图充分融合来生成最终的色泽度饱满、细节信息丰富的结果。提出的算法在LOL-dataset数据集的结构相似度指标为0.8032,比同类最优算法高出6.37%。