摘要
在“碳达峰、碳中和”这一国家重大战略背景下,CO2捕集已经成为当前重大科技发展方向。固体吸附剂吸附法在CO2的捕集过程中应用广泛,其中SiO2气凝胶具有成本低、合成方法灵活、分离效率高、表面易修饰等优点。然而,SiO2气凝胶材料也存在CO2/N2吸附选择性低,CO2吸附容量有待继续提高等缺陷。为解决上述问题,本文制备了一种Cu-BTC@SiO2复合气凝胶CO2吸附材料。首先,利用扫描电子显微镜(SEM)、傅里叶红外光谱(FTIR)和氮气吸脱附测试对材料表面化学和孔隙结构进行了系统表征。然后,通过二氧化碳吸附测试对其CO2吸附量、选择性吸附、循环吸附进行了研究。最后,采用理论与实验研究结合的方法,对吸附剂的CO2吸附动力学进行了研究。结果表明,Cu-BTC与SiO2气凝胶具有结构协同作用,与Cu-BTC复合后的SiO2气凝胶不会改变材料的Si-O-Si骨架结构,同时可以保持Cu-BTC的晶体结构不受到损坏。复合材料具有726.431 m2/g的高比表面积,570.781 m2/g的微孔比表面积和0.184 cm3/g的高微孔体积。负载四乙烯五胺(TEPA)后CO2吸附量高达3.20mmol/g,CO2/N2选择性吸附系数为40.8,循环10次CO2吸附循环,吸附容量仅下降14%,提高了SiO2气凝胶材料的CO2吸附容量和吸附选择性。Avrami分数动力学模型对吸附实验结果拟合相关系数为0.99,且Avrami指数nA为1.9表明吸附剂对CO2的吸附是非均质的多层吸附,既有物理吸附又有化学吸附,且以物理吸附为主。利用具有丰富微孔结构的金属有机骨架材料Cu-BTC与SiO2气凝胶进行复合,使复合材料具有分级微/介孔结构,通过增强分子间作用力(范德华力)来增强材料对CO2的物理吸附;使用TEPA对材料进行浸渍改性,利用有机胺和酸性气体之间的酸碱相互作用来增强材料对CO2的化学吸附。
- 单位