摘要

数据采集与监视控制系统(SCADA)储存了风电机组大量的警报信号,这些警报信号对故障类型具有一定的指示作用。为了及时有效地检测出风电机组故障,提出一种基于低频SCADA警报信号和D-S证据理论的风电机组故障诊断方法。首先从维修记录中提取故障类型构建辨识框架,然后选取故障当天触发的所有警报信号作为证据源,最后基于改进的D-S理论进行信息融合实现故障诊断。验证结果表明,该方法可以实现风电机组故障的有效诊断,为风电机组故障诊断提供了一种新的思路。