用户行为序列个性化推荐研究综述

作者:汪菁瑶; 吴国栋; 范维成; 涂立静; 李景霞
来源:小型微型计算机系统, 2022, 43(05): 921-935.
DOI:10.20009/j.cnki.21-1106/TP.2021-0880

摘要

作为缓解信息过载的一种重要方式,推荐系统可以帮助用户从海量信息中快速找到有价值的信息,其应用也越来越广泛.用户行为序列个性化推荐,又简称为序列推荐,主要根据用户与物品交互行为对用户特征进行建模,进而使用不同方法捕捉用户的长期偏好和短期偏好,向用户推荐其可能感兴趣的物品.本文从用户偏好会随时间变化的视角出发,分为用户长期偏好、短期偏好和长短期偏好3个方面,重点探讨了现有用户行为序列个性化推荐研究取得的主要进展;分析了当前用户行为序列个性化推荐研究中存在的冷启动、数据稀疏和噪声干扰等主要问题,并进一步展望了该领域未来主要研究方向.

全文