利用多个稀疏表示分类器融合的决策信息对图像进行分类,可避免单个特征对图像分类的影响。提出一种自适应调节权重的多稀疏分类器融合图像分类方法。对原始图像分别提取3组不同特征,并训练出各自稀疏表示分类器;根据各个子分类器的准确率,通过迭代计算自适应确定各分类器最终权重;融合各子分类器的输出结果进行最终类别判断。基于Cifar-10图像数据集进行多组实验,结果表明,相对仅提取单特征的图像分类方法,该方法有效提高了图像分类准确率。