摘要

教与学优化算法(Teaching-learning-based optimization,TLBO)是一种模拟教学过程的启发式优化算法。针对TLBO算法有寻优精度低、稳定性差的特点,提出了基于社会心理学理论改进的教与学优化算法(Social psychology teaching-learning-based optimization,SPTLBO)。该算法在改进中考虑了人的心理因素:在原TLBO算法的“教”阶段中结合社会心理学的“期望效应”理论,教师对高期望学生采取一对一教学策略,使得优秀学生更快向教师靠近;为了保留学生的多样性,学生依据认知风格可分为“场独立”与“场依存”两种类型,不同类型的学生将采取不同的交流方式进行学习;在“教”、“学”阶段后,结合自我调节理论,学生进入学习方法调整阶段,从而增强了自我探索能力,提高学生整体水平。此外,引入自适应学生更新因子,模拟环境对学生学习效率的影响,增加算法的全局搜索能力,避免出现在初期迭代中陷入局部最优的情况。在25个标准测试函数上进行实验,结果表明SPTLBO算法相较基本TLBO算法和其他智能优化算法,在寻优精度和收敛速度方面都更具优势。