摘要

变形监测与预报是保证边坡工程施工安全与工程质量的重要措施,但由于位移时间序列的强非线性,边坡变形预报成为非常困难的问题.自适应模糊神经推理系统(ANFIS)有优越的学习和泛化性能,而遗传算法(GA)是优秀的全局优化工具.采用遗传算法优化ANFIS参数,并编制了相应的计算程序.结合三峡工程永久船闸施工变形监测和新滩滑坡变形监测,建立了边坡变形时序分析的GA-ANFIS智能模型.为了对比该模型的预测精度,采用GA优化支持向量回归(SVR)和BP神经网络的模型参数,编制了GA-SVR及GA-BP程序,对相同的算例进行了变形预测分析.按滚动预测法对三峡永久船闸高边坡和新滩滑坡的计算结果表明,文中提出的GA-ANFIS模型能够获得比GA-SVR和GA-BP模型更高的预测精度,可以应用于边坡工程变形监测预报分析,并为类似工程提供参考.

  • 单位
    铁道第三勘察设计院集团有限公司; 建筑工程学院; 北京交通大学