摘要
针对传统农作物冠层施药沉积量分类模型分类准确率低、网络模型参数量大且运算速度慢的问题,该研究提出一种改进的SPP-Net-Inception-v4模型。该模型通过构建稀疏网络结构平衡各个模型子网间的计算量,利用3个Inception模块生成施药沉积量在柑橘冠层热红外图像的稠密有效特征数据;在模型的卷积层与全连接层间创新性接入空间金字塔池化网络(Spatial Pyramid Pooling Network, SPP-Net),进行一次历遍提取热红外图像特征信息,再通过空间池化操作融合3种池化方式提取的多尺度特征,实现柑橘冠层热红外图像施药沉积量表现特征的提取与融合。搭建多环境因素自主控制试验环境,模拟无人机低空采集柑橘冠层热红外图像,应用3个分类模型进行对比试验,试验结果表明,SPP-Net-Inception-v4模型与Inception-v4和ResNet-152两种模型相比,准确率分别提高1.58%和3.26%,模型训练完成冻结后占用计算机存储空间大小分别降低13%和24%,表明SPP-Net-Inception-v4模型在降低模型规模的基础上,提高了柑橘树冠层施药沉积量分类的准确率,可为精准农业航空中无人机植保技术的进一步发展提供参考。
-
单位电子工程学院; 华南农业大学