摘要

针对负荷分解准确率低、模型泛化性能差的问题,提出一种多尺度卷积与Informer网络相结合的非侵入式负荷监测方法。采用数据分段优化方法对功率信号进行分段,利用多尺度卷积核获取不同时间尺度的特征序列,自适应提取多维度功率特征,形成特征矩阵;基于Informer网络中的概率稀疏自注意力机制在高维空间中充分捕获特性序列的长期依赖关系,从而提高预测准确率;利用分解值修正方法消除功率分解值中的“虚假”激活状态,进一步提高算法的分解精度。算例结果验证了所提方法的可行性。

全文