针对现有低照度图像增强算法难以同时处理亮度、对比度、伪影和噪声等因素,提出了多分支残差与仿射变换低光增强网络,其核心思想是运用不同模块处理不同的任务。首先通过光照估计模块获得低光图像的光照变量,然后使光照仿射变换模块与光照编码参数融合恢复图像的光照,最后通过细节重建模块融合更多的图像细节获得最终输出。实验结果表明,该方法有效地丰富了图像的纹理细节,同时增强了亮度和对比度,并具有更少的伪影和噪声。通过与其他主流方法进行比较,定量和定性地证明了提出方法对低光图像增强的效果更好。