摘要
针对概念漂移主动检测方法检测延迟高,易出现漏检、误报的问题,提出了一种基于McDiarmid边界的自适应加权概念漂移检测方法。引入衰减函数对分类结果加权,赋予旧数据更低权值,提升新数据的影响力。利用McDiarmid不等式得到加权分类正确率的置信边界,在检测到分类正确率下降超过置信边界时调节衰减因子时,实现权值的动态改变。实验主要与DDM(Drift Detection Method)、RDDM(Reactive Drift Detection Method)、HDDM(Drift Detection Method based on the Hoeffding’s inequality)、FHDDM(Fast Hoeffding Drift Detection Method)和窗口(ADWIN)算法对比,结果表明,该算法具有最低的误报率和漏检率,且平均检测延迟和正确率在6种算法中排前2。
- 单位