摘要
针对果园环境中GNSS定位信号易丢失和传统SLAM算法鲁棒性较差的问题,本文提出一种基于LiDAR/IMU紧耦合框架的全局无偏状态估计果园机器人定位与建图方法。LiDAR/IMU紧耦合框架基于因子图进行多源约束的IMU里程计构建,实时输出高频位姿信息,IMU里程计因子和预积分因子优化LiDAR里程计并提供位姿先验约束IMU零偏。引入局部点云地图参与特征点云粗匹配和非特征点云递进式匹配进一步稠密化源点云,改善LiDAR里程计的性能。融合GPS信号与LiDAR/IMU紧耦合框架的地图构建,能够得到准确且高频连续的位姿信息,提高点云地图的复用率。在果园和苗木等场景验证了该算法的性能,实验结果表明,与LIO-SAM等算法相比,定位精度维持在0.05 m左右,均方根误差为0.016 2 m。本文算法使机器人具有更高的精度、实时性和鲁棒性,有效降低了系统累积误差,保证了所构建地图的全局一致性。
- 单位